skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bergin, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Herein, we describe the implementation of virtual labs that simulate central nervous system functions. The virtual labs use Jupyter Notebooks as a method of distribution. The underlying physiology is implemented using NEURON [8]. Python is used to implement interactive portions of the code without the need to know how to write code. Together, these tools provide a method for engaging students in inquiry-based exploration of neuroscience processes. Additionally, we report that computational tools have potential to engage students and promote inclusion in the research community similarly to students who have a traditional laboratory experience. 
    more » « less
  2. We developed an interdisciplinary course in computational neuroscience to address the need for students trained in both biological/psychological and quantitative sciences. Increasingly, exposure to advanced math and physics is important to stay on the cutting edge of developments and research in neuroscience. Additionally, the ability to work in multidisciplinary teams will continue to be an asset as the field develops. This course brings together students from biology, psychology, biochemistry, engineering, physics, and mathematics. The course was designed to highlight the importance of math in understanding fundamental neuroscience concepts and to prepare students for professional careers in neuroscience. They learn neurobiology, via a ‘biology to model and back again’ approach involving wet- and software/modeling-labs, with the latter being the focus of this paper 
    more » « less